
A Memory Model for RISC-V

Arvind (joint work with Sizhuo Zhang and
Muralidaran Vijayaraghavan)
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

Barcelona Supercomputer Center, Barcelona
June 27, 2017

1

MIT’s Riscy Expedition:
Chips with Proofs with Adam Chlipala

2

Full RISC-V
Chip

Full Chip
Prooflot of effort

RISC-V
Modules

Modular
Proofs

Less effort
Sizhuo Zhang Jamey HicksAndy Wright Murali VijayaraghavanThomas Bourgeat Joonwon Choi

Build processors and proofs modularly to
reduce design and proof effort

Current Riscy Offerings
www.github.com/csail-csg/riscy

Building Blocks for Processor Design:
 Riscy Processor Library
 Riscy BSV Utility Library

Reference Processor Implementations:
 Multicycle
 In-Order Pipelined
 Out-of-Order Execution

Infrastructure:
 Connectal
 Tandem Verification

3

A flexible way of designing
processors leveraging Bluespec
System Verilog (BSV)

One low-power RISC-V chip
with security accelerators for
IOT applications had been
taped out (with Chandrakasan)

Plan

What is the memory model debate
about?

Two weak-memory model proposals for
RISC-V

4

General Observations
Memory models in use were never designed –
they “emerged” when people started building
shared memory machines
 IBM 370, SUN, Intel, ARM, …

“Emerged”: Just about every correct and
popular microarchitectural and compiler
optimization becomes (programmatically)
visible in a multiprocessor setting
A memory-model specifies which program
behaviors are legal and which are not

5

Goal: Specify a memory model for RISC-V
to guide architects and programmers

Optimizations & Memory
Models

Architectural optimizations that are correct for
uniprocessors, often violate SC and result in a new
memory model for multiprocessors

Data
Cache Memory

pushout buffers
store
buffers

CPU

load queueProcessor-Memory
Interface

Suppose Loads can bypass stores in the store buffer

Process 1 Process 2
Store(x,1); Store(flag,1);
r1 := Load(flag); r2 := Load(x);

Example: Store Buffers

Initially, all memory
locations contain zeros

Is it possible that both r1and r2 are 0 simultaneously?

Not possible in SC but allowed in the TSO
memory model (IBM 370, Sparc’s TSO, Intel)

Memory Fence Instructions
A programmer needs instructions to prevent
undesirable Load-Store reorderings
 Intel : MFENCE; Sparc: MEMBAR, …
 Meaning - All instructions before the fence must be

completed before any instruction after the fence is
executed

8

What does it mean for a store instruction
to be completed?

Insertion of fences is a significant burden
for the programmer and compiler writer

IBM 370 did not want to change the instruction
set – so they stipulated that a load immediately
preceded by a store will act as a barrier

Process 1 Process 2
Store(x,1); Store(flag,1);
r3 := Load(x); r4 := Load(flag);
r1 := Load(flag); r2 := Load(x);

A hack in IBM 370 ISA

The meaning of the program will change if the
middle (dead) load is deleted by an optimizer!

There were several such hacks

Memory Model Landscape
Sequential Consistency (SC)
 Easy to understand and formalize; no fences
 All parallel programming is built on SC foundations
 No ISA supports it exclusively

Total Store Order (TSO)
 Loads can jump over stores; operationally can be

explained in terms of Store buffers
 Easy to understand and formalize; one fence
 Intel ISA supports it  lots of legacy code

Weaker memory models
 RMO, RC, Alpha, POWER, ARM, …
 No two models agree with each other
 Experts don’t agree on definitions

10

Weak Memory Models

11

Architects find
SC & TSO
constraining

Programmers
hate weak
memory
models

C++

Different Viewpoints

12

Architects: Out-of-order and speculative
execution is the backbone of modern processors
 Results in reordering of loads and stores
 Extra hardware to detect SC/TSO violations
 Not all violations affect program correctness

Programmers: Difficult to understand,
implementation-driven weak memory models
ARM, POWER, RMO, Alpha, etc.
 Insertion of model-dependent fences difficult
 Extra fences  bad performance
 Too few  errors (often latent); undesirable behaviors

 Automatic insertion of minimal number of fences is
impossible

Definitions are awful

13

POWER sync fence: Any access in group A
(instructions before the fence in P1) are performed
with respect to any processor before any access
in group B (instructions after the fence in P1).
The fence is cumulative and it implies:
- Group A also includes all accesses by any

processor that have been performed w.r.t. P1
before the fence is executed

- Group B also includes all accesses by any
processor that are performed after a load
executed by that processor has returned the
value of a store in B.

What is
performed

w.r.t??

Weak Memory Model
Debate

The subtleties cannot be handled without
formalisms – informal natural language
descriptions in the manuals just won’t do
In the last 10 years researchers with training
in formal methods have jumped into the fry,
mostly from outside the architecture
community
 Architects are gasping…
 Formal people often do not understand what is

implementable
 Too much reliance on litmus tests

14

Current practice
Develop an axiomatic model based on informal
company documentation and empirical
observations to determine allowed and
disallowed behaviors
Summarize observations as a set of litmus
tests, each test is a multithreaded program
 2 to 4 threads, small straight-line codes (2 to 6

instructions)
Use formal tools (mostly model checking) to
show if a multithreaded program with fences
shows only legal behaviors

15

RISC-V Memory Model
debate

Stick to TSO
 The programming community loves it
 Most architects barf at the idea because they think

they will lose performance

Adopt a cleaned up weak memory model
 Specify via a “simple” axiomatic model
 Specify via a “simple” operational model
 The two definitions must match
 Don’t restrict implementations

16

Requires research!

Performance issues
Naïve viewpoint: If a memory model does not
allow a particular instruction reordering then
the microarchitecture cannot do it
 demonstrably false, look at Intel implementations

Fact 1: In-order pipelines
 No instruction reordering  No memory model issues

Fact 2: All modern OOO pipelines are similar
 ROB, store buffers, cache hierarchies, …
 Rely on speculation machinery to squash unwanted

memory behaviors

17

No proper studies exist to show the advantage
of weak memory models or the hardware
overhead of preserving TSO

Weak memory models:
Technical issues

Atomic vs Non-Atomic memory subsystems
Should Load-Store reordering, i.e., a store is
allowed to be issued to memory before
previous loads have completed, be permitted?
Which same address dependencies must be
enforced?
 Load a ; Load a ;
 Store a, Load a ;

How many different fences should be
supported?
 Different fences can have different performance

implications

18

Even TSO allows this reordering

Atomic memory systems

19

Consensus: RISC-V memory model definition
will rely only on atomic memory

Monolithic memory ݉

Port ݅
Ld/St req Ld/St resp

Instantaneous
responses

ሾ݅ሿܾݎ

Add a request to rb
Later process the oldest request for any
address on any port

Request
buffer

Example: Ld-St Reordering
Permitting a store to be issued to the memory
before previous loads have completed, allows
load values to be affected by future stores in the
same thread

20

Process 1 Process 2
r1 := Load(a) r2 := Load(b) = 1
Store(b, 1) Store(a, r2)

2. Dependency

3. Read from

 Load a misses in local cache
 Store a is written to memory
 Load b reads the latest value
 Store a is written to memory
 Load a reads the latest value

= 1

Load-Store Reordering
Nvidia says it cannot do without Ld-St
reordering
Although IBM POWER memory model allows
this behavior, the server-end POWER
processors do not perform this reordering for
reliability, availability and serviceability (RAS)
reasons
MIT opposes the idea because it complicates
both the operational and axiomatic definitions,
and MIT estimates no performance penalty in
disallowing Ld-St reordering

21

Nevertheless MIT has worked diligently to come
up with a model that allows Ld-St ordering

WMM: MIT proposal [PACT2017]

Philosophy: Develop a weak memory model
that does not rule out any hardware
optimizations (WMM)

Suffer the pain of inserting fences once; the
code should work on any reasonable machine

22

Even for multithreaded programs, let
programmers think in terms of sequential
execution of threads. However some loads
and stores are for communication and may
be followed or preceded by fences.

Instantaneous Instruction
Execution (to simplify definitions)

Instructions execute in-order and instantaneously;
processor state is always up-to-date
Monolithic memory processes loads and stores
instantaneously
Data moves between processors and memory
asynchronously according to some background
rules

23

Monolithic memory

…

Processor
Reg state

Processor
Reg state

Memory-Model
specific buffers

SC in I2E

Pick a processor, execute its current instruction
instantaneously and update the register state
 A Load reads the memory instantaneously
 A Store updates the memory instantaneously

Monolithic memory ݉

…
Processor ݏ݌ሾ݅ሿ

Reg state ݏ …

24
Dijkstra 1966, Lamport 1973

SC allows no reordering of instructions

TSO in I2E

25

A store first goes into the Store buffer (SB)
A load reads the youngest corresponding entry from SB
before reading the memory
A store is dequeued from the SB in FIFO order to update
the monolithic memory (background rule)
A commit fence stalls local execution until SB is empty

Monolithic memory

…
Processor
Reg state

Processor
Reg state

Store
buffer

Store
buffer

simple and
vendor
independent

St a v

<a,v>

<a,v>

TSO allows loads to overtake stores

 PSOper address


WMM: Also allows load-Load reordering
Sizhuo Zhang, Murali Vijayaraghavan, Arvind

26

Introduce Invalidation Buffers (IB), a conceptual device to
make stale values visible
Whenever <a,v> from SB is moved to the memory, the old
value for a in memory is inserted into IB of all other
processors and all values for a are purged from the local IB
Values in IB and memory can be read by a load if the
address is not found in the SB; staler values than the one
read are purged from IB
A Reconcile fence clears the invalidation buffer
A Commit fence clears the store buffer

Monolithic memory

…
Processor
Reg state

Store
buffer

Inv
buffer

Processor
Reg state

Store
buffer

Inv
buffer

<a,v>
<a,old_v>

Intuitive Understanding of
WMM

Allowed reorderings
 A load can overtake loads (to different addresses),

stores and Commit fences
 A Store can overtake stores (to different addresses)
Reconcile stops younger loads from reading
stale values (Acquire semantics)
Commit advertises older stores globally
(Release semantics)

27

Fences for Common Paradigms:

Producer-consumer by signaling

Reconcile prevents d0~d7 from reading stale
values in ܾ݅
Commit prevents stores to data[0~7] staying
in ܾݏ

28

Global
Memory

int *data = new int[8];
int *flag = new int;

Thread 1 Thread 2
data[0] = 100;
...
data[7] = 800;
Commit;
*flag = 1;

while(*flag != 1) {};
Reconcile;
int d0 = data[0];
...
int d7 = data[7];

Fences for Common Paradigms:

Properly Synchronized Programs

Critical sections are preserved by locks

29

Global Memory mutex_t mutex;
Thread 1 Thread 2
mutex.lock();
Reconcile;
// critical section
Commit;
mutex.unlock()

mutex.lock();
Reconcile;
// critical section
Commit;
mutex.unlock();

Model X: Also allows Ld-St reordering
Sizhuo Zhang, Murali Vijayaraghavan, Arvind

Each processor is an unbounded ROB with a
perfect branch predictor
Instructions in ROB are marked as done or !done
 ALU or branch instructions are executed when operands

are available and marked as done
 Loads get their values either by bypassing in ROB or by

reading the monolithic memory
 Stores update the monolithic memory

30

Monolithic memory

ROB ROB…

The operational model also works for WMM with minor
modifications

Model X:
General considerations

No speculative stores
Enforces the ordering between two consecutive
loads for the same address (same as WMM)
Enforces data dependencies (WMM does not)

31

Process 1 Process 2
Store(a, 1) r1 := Load(b) = a
Commit r2 := Load(r1) = 0
Store(b, a)

WMM allows
load-value
prediction

WMM: A load value is predicted at fetch time

Rule to execute load inst
Address has been computed
All older Reconcile fences have been done
Check for same address operations: Search the ROB from ݅
towards the oldest instruction for the first not-done
memory instruction with the same address
 If a not-done load is found, then ݅ cannot be executed
 If a not-done store to a is found then if the data for the

store is ready, then execute ݅ by bypassing the data
from the store, and mark ݅ as done; otherwise, ݅ cannot
be executed.

 If nothing is found then execute ݅ by reading the
monolithic memory, and mark ݅ as done

32

WMM: if the loaded value differs from the previously
predicted value, then kill the load

Rule to execute store inst
Address and data of ݅ have been computed
All older fences have been done
All older branches have been done
All older loads and stores have computed their addresses
All older loads and stores for the same address have been
done
Update the monolithic memory and mark ݅ as done

33

WMM: When all older loads (not just to the
same address) have been done

Rule to kill speculative
loads

Compute the address of a load or store
instruction ݅	
Search ROB from ݅ towards the youngest
instruction for the first memory instruction
with the same address
 If the instruction found is a done load, kill it

34

Formal Results
We have provided axiomatic definitions for
both WMM and Model X
We have also proven the following theorems
for both models :

35

Soundness: Modeloperational  Modelaxioms

Completeness: Modelaxioms  Modeloperational

Summary
RISC-V memory model debate is not settled;
in spite of lot of research by the Memory
Model Committee (Chair Dan Lustig), the
community may vote for TSO
We have only been discussing the base
memory model without the systems
instructions (fences for TLBs and self
modifying codes)
We have also not touched the topic of
communication between the processors and
accelerators

36

Please voice your opinions by joining the online discussions
Thanks!

Extras

37

Model X rules
Fetch an instruction
 Fetch the next instruction into ROB; predict the next PC

Execute a reg-to-reg or branch instruction
 When source operands are ready
 Mark the instruction as done
 If branch is mispredicted previously, then flush ROB

Compute store address when source operands are ready
Execute a Commit fence
 When all previous memory instructions and fences are done
 Mark the fence as done

Execute a Reconcile fence
 When all previous loads and fences are done
 Mark the fence as done

38

WMM: if the fetched instruction is a load, predict its value

Compilation from C++11
to WMM

C++11 introduces atomic variables in addition to
the ordinary (non-atomic) ones
 Non-atomic variables are accessed by non-atomic Ld/St
 Atomic variables can be accessed by Ld/St with different

semantics (e.g. load acquire and store release)
39

C++ operations WMM instructions
Non-atomic Load /
Load Relaxed

Ld

Load Consumed /
Load Acquire

Ld; Reconcile

Load SC Commit; Reconcile; Ld; Reconcile
Non-atomic Store /
Store Relaxed

St

Store Released /
Store SC

Commit; St

Atomic read-modify-write
Directly load from and store into the
monolithic memory
SB should not contain the address
The address should be purged from IB

40

Insertion of fences in racy
programs is difficult

41

void enq(queue_t *queue, value_t value) {
 node_t *tail; node_t *next;
 node_t *node = new node_t;
 node->value = value; node->next = NULL; F1: Commit;
 while (true) {
 L1: tail = queue->tail; F2: Reconcile;
 L2: next = tail->next; F3: Reconcile;
 L3: if (tail == queue->tail)
 if (next == NULL) {
 if (CAS(&tail->next, next, node)) break;
 } else CAS(&queue->tail, tail, next)
 }
 CAS(&queue->tail, tail, node);
}

Lock free enque

