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MIT’s Riscy Expedition:
Chips with Proofs with Adam Chlipala
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Full RISC-V 
Chip

Full Chip 
Prooflot of effort

RISC-V 
Modules

Modular 
Proofs

Less effort
Sizhuo Zhang Jamey HicksAndy Wright Murali VijayaraghavanThomas Bourgeat Joonwon Choi

Build processors and proofs modularly to 
reduce design and proof effort 



Current Riscy Offerings
www.github.com/csail-csg/riscy

Building Blocks for Processor Design:
 Riscy Processor Library
 Riscy BSV Utility Library

Reference Processor Implementations:
 Multicycle
 In-Order Pipelined
 Out-of-Order Execution 

Infrastructure:
 Connectal
 Tandem Verification
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A flexible way of designing 
processors leveraging Bluespec 
System Verilog (BSV)

One low-power RISC-V chip 
with security accelerators for 
IOT applications had been 
taped out (with Chandrakasan)



Plan

What is the memory model debate 
about?

Two weak-memory model proposals for 
RISC-V
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General Observations
Memory models in use were never designed –
they “emerged” when people started building 
shared memory machines
 IBM 370, SUN, Intel, ARM, … 

“Emerged”: Just about every correct and 
popular microarchitectural and compiler 
optimization becomes (programmatically) 
visible in a multiprocessor setting
A memory-model specifies which program 
behaviors are legal and which are not
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Goal: Specify a memory model for RISC-V 
to guide architects and programmers



Optimizations & Memory 
Models

Architectural optimizations that are correct for
uniprocessors, often violate SC and result in a new 
memory model for multiprocessors

Data
Cache Memory

pushout  buffers
store
buffers

CPU

load queueProcessor-Memory
Interface



Suppose Loads can bypass stores in the store buffer

Process 1 Process 2
Store(x,1); Store(flag,1);
r1 := Load(flag); r2 := Load(x);

Example:  Store Buffers

Initially, all memory 
locations contain zeros

Is it possible that both r1and r2 are 0 simultaneously?

Not possible in SC but allowed in the TSO 
memory model ( IBM 370, Sparc’s TSO, Intel)



Memory Fence Instructions
A programmer needs instructions to prevent 
undesirable Load-Store reorderings
 Intel : MFENCE; Sparc: MEMBAR, …
 Meaning - All instructions before the fence must be 

completed before any instruction after the fence is 
executed
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What does it mean for a store instruction 
to be completed?

Insertion of fences is a significant burden 
for the programmer and compiler writer



IBM 370 did not want to change the instruction 
set – so they stipulated that a load immediately 
preceded by a store will act as a barrier

Process 1 Process 2
Store(x,1); Store(flag,1);
r3 := Load(x); r4 := Load(flag);
r1 := Load(flag); r2 := Load(x);

A hack in IBM 370 ISA

The meaning of the program will change if the 
middle (dead) load is deleted by an optimizer!

There were several such hacks



Memory Model Landscape
Sequential Consistency (SC)
 Easy to understand and formalize; no fences
 All parallel programming is built on SC foundations
 No ISA supports it exclusively

Total Store Order (TSO)
 Loads can jump over stores; operationally can be 

explained in terms of Store buffers
 Easy to understand and formalize; one fence
 Intel ISA supports it  lots of legacy code

Weaker memory models
 RMO, RC, Alpha, POWER, ARM, …
 No two models agree with each other 
 Experts don’t agree on definitions
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Weak Memory Models
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Architects find 
SC & TSO 
constraining

Programmers 
hate weak 
memory 
models

C++



Different Viewpoints
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Architects: Out-of-order and speculative 
execution is the backbone of modern processors
 Results in reordering of loads and stores
 Extra hardware to detect SC/TSO violations
 Not all violations affect program correctness 

Programmers: Difficult to understand, 
implementation-driven weak memory models 
ARM, POWER, RMO, Alpha, etc.
 Insertion of model-dependent fences difficult
 Extra fences  bad performance
 Too few   errors (often latent); undesirable behaviors

 Automatic insertion of minimal number of fences is 
impossible



Definitions are awful
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POWER sync fence: Any access in group A
(instructions before the fence in P1) are performed 
with respect to any processor before any access 
in group B (instructions after the fence in P1). 
The fence is cumulative and it implies:
- Group A also includes all accesses by any 

processor that have been performed w.r.t. P1 
before the fence is executed

- Group B also includes all accesses by any 
processor that are performed after a load 
executed by that processor has returned the 
value of a store in B.

What is 
performed 

w.r.t??



Weak Memory Model 
Debate

The subtleties cannot be handled without 
formalisms – informal natural language  
descriptions in the manuals just won’t do
In the last 10 years researchers with training 
in formal methods have jumped into the fry, 
mostly from outside the architecture 
community
 Architects are gasping…
 Formal people often do not understand what is 

implementable
 Too much reliance on litmus tests
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Current practice
Develop an axiomatic model based on informal 
company documentation and empirical 
observations to determine allowed and 
disallowed behaviors
Summarize observations as a set of litmus 
tests, each test is a multithreaded program 
 2 to 4 threads, small straight-line codes (2 to 6 

instructions) 
Use formal tools (mostly model checking) to 
show if a multithreaded program with fences 
shows only legal behaviors
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RISC-V Memory Model 
debate

Stick to TSO
 The programming community loves it
 Most architects barf at the idea because they think 

they will lose performance

Adopt a cleaned up weak memory model
 Specify via a “simple” axiomatic model
 Specify via a “simple” operational model
 The two definitions must match
 Don’t restrict implementations
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Requires research!



Performance issues 
Naïve viewpoint: If a memory model does not 
allow a particular instruction reordering then 
the microarchitecture cannot do it 
 demonstrably false, look at Intel implementations

Fact 1: In-order pipelines
 No instruction reordering  No memory model issues 

Fact 2: All modern OOO pipelines are similar
 ROB, store buffers, cache hierarchies, … 
 Rely on speculation machinery to squash unwanted 

memory behaviors
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No proper studies exist to show the advantage 
of weak memory models or the hardware 
overhead of preserving TSO



Weak memory models:
Technical issues

Atomic vs Non-Atomic memory subsystems
Should Load-Store reordering, i.e., a store is 
allowed to be issued to memory before 
previous loads have completed, be permitted?
Which same address dependencies must be 
enforced?
 Load a ; Load a ;
 Store a, Load a ;

How many different fences should be 
supported?
 Different fences can have different performance 

implications
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Even TSO allows this reordering



Atomic memory systems
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Consensus: RISC-V memory model definition 
will rely only on atomic memory

Monolithic memory ݉

Port ݅
Ld/St req Ld/St resp

Instantaneous 
responses

ሾ݅ሿܾݎ

Add a request to rb
Later process the oldest request for any 
address on any port

Request 
buffer



Example: Ld-St Reordering
Permitting a store to be issued to the memory 
before previous loads have completed, allows  
load values to be affected by future stores in the 
same thread
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Process 1 Process 2
r1 := Load(a) r2 := Load(b) = 1
Store(b, 1) Store(a, r2)

2. Dependency

3. Read from

 Load a misses in local cache
 Store a is written to memory
 Load b reads the latest value
 Store a is written to memory
 Load a reads the latest value

= 1



Load-Store Reordering
Nvidia says it cannot do without Ld-St 
reordering
Although IBM POWER memory model allows 
this behavior, the server-end POWER 
processors do not perform this reordering for 
reliability, availability and serviceability (RAS) 
reasons
MIT opposes the idea because it complicates 
both the operational and axiomatic definitions, 
and MIT estimates no performance penalty in 
disallowing Ld-St reordering
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Nevertheless MIT has worked diligently to come 
up with a model that allows Ld-St ordering



WMM: MIT proposal [PACT2017]

Philosophy: Develop a weak memory model 
that does not rule out any hardware 
optimizations (WMM)

Suffer the pain of inserting fences once; the 
code should work on any reasonable machine
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Even for multithreaded programs, let 
programmers think in terms of sequential 
execution of threads. However some loads 
and stores are for communication and may 
be followed or preceded by fences.



Instantaneous Instruction 
Execution (to simplify definitions)

Instructions execute in-order and instantaneously; 
processor state is always up-to-date
Monolithic memory processes loads and stores 
instantaneously
Data moves between processors and memory 
asynchronously according to some background 
rules
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Monolithic memory

…

Processor 
Reg state

Processor 
Reg state

Memory-Model 
specific buffers



SC in I2E

Pick a processor, execute its current instruction 
instantaneously and update the register state
 A Load reads the memory instantaneously
 A Store updates the memory instantaneously

Monolithic memory ݉

…
Processor ݏ݌ሾ݅ሿ

Reg state ݏ …
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Dijkstra 1966, Lamport 1973

SC allows no reordering of instructions



TSO in I2E
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A store first goes into the Store buffer (SB)
A load reads the youngest corresponding entry from SB 
before reading the memory
A store is dequeued from the SB in FIFO order to update 
the monolithic memory (background rule)
A commit fence stalls local execution until SB is empty

Monolithic memory

…
Processor 
Reg state

Processor 
Reg state

Store
buffer 

Store
buffer 

simple and 
vendor 
independent

St a v

<a,v>

<a,v>

TSO allows loads to overtake stores

 PSOper address




WMM: Also allows load-Load reordering
Sizhuo Zhang, Murali Vijayaraghavan, Arvind
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Introduce Invalidation Buffers (IB), a conceptual device to 
make stale values visible 
Whenever <a,v> from SB is moved to the memory, the old 
value for a in memory is inserted into IB of all other 
processors and all values for a are purged from the local IB
Values in IB and memory can be read by a load if the 
address is not found in the SB; staler values than the one 
read are purged from IB
A Reconcile fence clears the invalidation buffer
A Commit fence clears the store buffer

Monolithic memory

…
Processor 
Reg state

Store
buffer 

Inv
buffer 

Processor 
Reg state

Store
buffer 

Inv
buffer 

<a,v>
<a,old_v>



Intuitive Understanding of 
WMM 

Allowed reorderings
 A load can overtake loads (to different addresses), 

stores and Commit fences
 A Store can overtake stores (to different addresses)
Reconcile stops younger loads from reading 
stale values (Acquire semantics)
Commit advertises older stores globally 
(Release semantics)
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Fences for Common Paradigms: 

Producer-consumer by signaling

Reconcile prevents d0~d7 from reading stale 
values in ܾ݅
Commit prevents stores to data[0~7] staying 
in ܾݏ
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Global
Memory

int *data = new int[8];
int *flag = new int;

Thread 1 Thread 2
data[0] = 100;
...
data[7] = 800;
Commit;
*flag = 1;

while(*flag != 1) {};
Reconcile;
int d0 = data[0];
...
int d7 = data[7];



Fences for Common Paradigms: 

Properly Synchronized Programs

Critical sections are preserved by locks
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Global Memory mutex_t mutex;
Thread 1 Thread 2
mutex.lock();
Reconcile;
// critical section
Commit;
mutex.unlock()

mutex.lock();
Reconcile;
// critical section
Commit;
mutex.unlock();



Model X: Also allows Ld-St reordering
Sizhuo Zhang, Murali Vijayaraghavan, Arvind

Each processor is an unbounded ROB with a 
perfect branch predictor
Instructions in ROB are marked as done or !done
 ALU or branch instructions are executed when operands 

are available and marked as done
 Loads get their values either by bypassing in ROB or by 

reading the monolithic memory
 Stores update the monolithic memory
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Monolithic memory

ROB ROB…

The operational model also works for WMM with minor 
modifications



Model X: 
General considerations

No speculative stores 
Enforces the ordering between two consecutive 
loads for the same address (same as WMM)
Enforces data dependencies (WMM does not)
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Process 1 Process 2
Store(a, 1) r1 := Load(b) = a
Commit r2 := Load(r1) = 0
Store(b, a)

WMM allows 
load-value 
prediction

WMM: A load value is predicted at fetch time



Rule to execute load inst
Address has been computed
All older Reconcile fences have been done
Check for same address operations: Search the ROB from ݅
towards the oldest instruction for the first not-done 
memory instruction with the same address
 If a not-done load is found, then ݅ cannot be executed
 If a not-done store to a is found then if the data for the 

store is ready, then execute ݅ by bypassing the data 
from the store, and mark ݅ as done; otherwise, ݅ cannot 
be executed.

 If nothing is found then execute ݅ by reading the 
monolithic memory, and mark ݅ as done
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WMM: if the loaded value differs from the previously 
predicted value, then kill the load



Rule to execute store inst
Address and data of ݅ have been computed
All older fences have been done
All older branches have been done
All older loads and stores have computed their addresses
All older loads and stores for the same address have been 
done
Update the monolithic memory and mark ݅ as done
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WMM: When all older loads (not just to the 
same address) have been done



Rule to kill speculative 
loads

Compute the address of a load or store 
instruction ݅	
Search ROB from ݅ towards the youngest 
instruction for the first memory instruction 
with the same address
 If the instruction found is a done load, kill it
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Formal Results
We have provided axiomatic definitions for 
both WMM and Model X
We have also proven the following theorems 
for both models :
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Soundness:     Modeloperational  Modelaxioms

Completeness:     Modelaxioms  Modeloperational



Summary
RISC-V memory model debate is not settled; 
in spite of lot of research by the Memory 
Model Committee (Chair Dan Lustig), the 
community may vote for TSO
We have only been discussing the base 
memory model without the systems 
instructions (fences for TLBs and self 
modifying codes)
We have also not touched the topic of 
communication between the processors and 
accelerators
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Please voice your opinions by joining the online discussions
Thanks!



Extras
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Model X rules
Fetch an instruction
 Fetch the next instruction into ROB; predict the next PC

Execute a reg-to-reg or branch instruction
 When source operands are ready
 Mark the instruction as done
 If branch is mispredicted previously, then flush ROB

Compute store address when source operands are ready
Execute a Commit fence
 When all previous memory instructions and fences are done
 Mark the fence as done

Execute a Reconcile fence
 When all previous loads and fences are done
 Mark the fence as done
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WMM: if the fetched instruction is a load, predict its value



Compilation from C++11 
to WMM

C++11 introduces atomic variables in addition to 
the ordinary (non-atomic) ones
 Non-atomic variables are accessed by non-atomic Ld/St
 Atomic variables can be accessed by Ld/St with different 

semantics (e.g. load acquire and store release)
39

C++ operations WMM instructions
Non-atomic Load /
Load Relaxed

Ld

Load Consumed / 
Load Acquire

Ld; Reconcile

Load SC Commit; Reconcile; Ld; Reconcile
Non-atomic Store / 
Store Relaxed

St

Store Released /
Store SC

Commit; St



Atomic read-modify-write
Directly load from and store into the 
monolithic memory
SB should not contain the address
The address should be purged from IB
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Insertion of fences in racy 
programs is difficult
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void enq(queue_t *queue, value_t value) {
  node_t *tail; node_t *next;
  node_t *node = new node_t;
  node->value = value; node->next = NULL; F1: Commit;
  while (true) {
    L1: tail = queue->tail; F2: Reconcile;
    L2: next = tail->next; F3: Reconcile;
    L3: if (tail == queue->tail)
      if (next == NULL) {
        if (CAS(&tail->next, next, node)) break;
      } else CAS(&queue->tail, tail, next)
  }
  CAS(&queue->tail, tail, node);
}

Lock free enque


