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We are interested in the mechanisms underlying molecular interactions and regulation

Create curated datasets from public databases
(i.e. genomic variants and Protein Interactions)

ZoomVar

Generate dynamical trajectories of selected proteins and
protein complexes

Develop methods to analyse large-scale data

Design comprehensive web tools, which enable access to all data

(raw and processed) and our software )
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Nutrients, Hormones & Stress

Interactions inside the cell...

Micrc;bial Toxins,
UV & Other Stress

Cell
g Death

GENOME

protein-gene interactions ~ “te

PROTEOME

protein-protein interactions
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Integration of human protein-

|ntegratlon protein interaction networks
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The human interactome:
each dot is a protein and
each line an interaction.
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PROTEIN MAPS CHART THE CAUSES OF DISEASE
Marisa Fessenden
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What about predictions?...recently there have been progresses
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A computational interactome and
functional annotation for the human

proteome

José Ignacio Garzdn', Lei Deng'?, Diana Murray', Sagi Shapira'”,
Donald Petrey'”, Barry Honig'4*47*

PrePPI makes about 127,000 reliable predictions
based only on evidence that indicates a direct
interaction (structural modeling — SM; protein
peptide — PrP, Protein redundancy —PR)

predicted interactions for about 85% of the human
proteome

A Kaleidoscopic view of Protein Interactions
to extract testable hypotheses for experiments



Development of tools for the analysis of Protein Protein Interactions
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Short loop network motit protiling
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“Throughout large-scale rigorous analyses on PPINs, we found short loops

are intrinsic features of protein-protein interaction networks (PPINs); the

number of short loops can be a topological barometer of PPINs and their 0.00 -

functional annotations can imply not only local enrichments but also wide- 3 4 5
ranging associations of short loops.” loop length

Chung, S.S. et al. Bridging topological and functional information in protein interaction networks by short loops profiling. Nature Scientific Reports (2015)

*Gene Ontology (GO)

Biological process terms
(Lv.2 and above)

percentage of

functional
consensus

1 75-100%

H. sapiens V (BP-MS)
(Havugimana et al.,
Cell 150, 1068-1081
2012)
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Functional enrichment in short loops

)

(o]

o
I

& Trend1
 Trend2
* Trend3

frequency of GO term(%

| | |
Network Loop3 Loop4 Loop5

)]
o
I

NN
o
I

" Trend4
Trend5

frequency of GO term(%)
N
o

| |
Network Loop5




&

biosynGRERIES

eprotein complex
subunit
*|ocalization (transport)

Chung SS, Pandini A, Annibale A, Coolen AC, Thomas NS, Fraternali F. Sci Rep. 2015 Feb 23;5:8540. doi: 10.1038/srep08540




Loop resilience identifies core clusters of protein interactions

ATP-dependent helicase Interleukin 2

Resilient short loop complex ( - \\ T cell Growth Factor
IL2
/f N\ v

U2 snRNP splicing O & S s N ’ . ,\
[ @ R

il O 8 ¢
In the sub-networks of the resilient loops important cellular @ S, i
functions are enriched such as ribosome biogenesis, P 516254
transcription, RNA splicing and translation. All these
processes are significantly increased as T cells enter the

cell cycle from Go and support cell proliferation and
activation of T cell effector functions
R




Probing protein interactions of ILF2, ILF3 and DHX9

using Proximity Ligation Assay

Primary human T-cells
Go : Quiescent status

G1: 72hours after CD3 +
CD28 stimulation

ILF2

Histone H3

DHX9 : RNA helicase A
ILF3 : IL2 (T-cell growth factor)
transcription regulator

ILF2 : Reshuttling of ILF3
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In collaboration with Ed Marcotte’s laboratory, Austin Texas

Probing protein interactions of ILF2, ILF3 and DHX9 in T-cells

using LC-MS/MS co-fraction assay
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Among 8 out of 9 replicas, ILF2, ILF3 and DHX9 are co-eluted in 48 different co-fractionated cell lysates of T-cells. (manuscript in preparation)



Summary

* We have shown by a large-scale analysis of publicly

available datasets that the present protein network data
are strongly biased by their experimental methods, while

still exhibiting species-specific similarity and
reproducibility.

* We have introduced a new strategy to identify regulators

of a signalling pathway by analysis of short loop motifs in
a reliable dataset of human soluble protein interactions

We demonstrate that short loops are an intrinsic property of
PPINs AND that contain significant information on

functional mechanisms underlying the biology of the cell.

We believe that these communities can be used in drug targeting screens to expand the
protein-drug space, and or suggest novel drug-disease associations that offer
unprecedented opportunities for drug repurposing and the detection of adverse effects.



Which variants play a causative role in disease?

‘ Pathogenic titin variants may be present in only a single/few individual(s).

‘ A number of known cases are due to the combined impact of two distinct mutations.

‘ We need to look at variant impact on the molecular level!

Approaches Problems

‘ In-vitro & in-vivo methods time-consuming and expensive.

’ Prioritise variants using in-silico techniques.



Motivation

Explosion in the growth of variant data — gnomAD database.

This has challenged previous conceptions regarding disease-associated variants.

We aimed to perform a more comprehensive comparison of the spatial
distribution and regional enrichment of variants in health and disease.

Goal — to uncover features which separate the datasets.

A Pan-Cancer Catalogue of Cancer Driver Protein Interaction
Interfaces
Eduard Porta-Pardo B, Luz Garcia-Alonso . Thomas Hrabe, Joaquin Dopazo [E], Adam Godzik [E]

Published: October 20, 2015 « https://doi.org/10.1371/journal.pcbi. 1004518

Spatial distribution of disease-associated Common sequence variants affect
variants in three-dimensional structures molecular function more than rare
of protein complexes variants?

A Gress. V Ramensky & O V Kalinina Yannick Mahlich , Jonas Reeb, Maximilian Hecht, Maria Schelling, Tjaart Andries Petrus De Beer,
il J

Yana Bromberg & Burkhard Rost



Challenges for variants mapping:
Titin - the largest protein in the Human Body

35991 amino acids (inferred complete (IC)isoform), weighs over 4000 kDa and spans half a sarcomere

Circulation. 2013 February 26; 127(8): 938-944. do1:10.1161/CIRCULATIONAHA.112.139717.

Titin is a major human disease gene

Martin M. LeWinter, M.D." and Henk L. Granzier, Ph.D.2
1Cardiology Unit, Fletcher Allen Health Care, Burlington, VT

2Sarver Molecular Cardiovascular Research Program and Department of Physiology, University
of Arizona, Tucson, AZ
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35991 amino acids!

e Titin missense variants associated with
myopathies.

* Due to titin’s large size, the majority of healthy

individuals possess rare titin missense variants.

* This results in the paradox that rare
titin variants are commonly found!

* Titin, the largest protein,
spans half a cardiac
sarcomere.

* Roles: scaffold, spring,
signalling.
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Increase In structural coverage
and model quality
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A Rising Titan: TTN Review and Mutation Update P u blmed

RefSeq
AR 7/~ mCSM Conde| BRUEISELE

E@ES*‘ SPPIDE

WORLDWIDE ® pin NnsSNPs on structure

@PDB ® explore disease hotspots

pRoTTIm pRTA RARE #® visualise nsSNP distributions
omoloq nde # assess the impact of nsSNPs

#® download structures

Modeller = and models
= //;- ¢ | ®assess model quality Q‘ﬁ(‘

———— 5 ® upload your own model

~TASSER

HMERF
hotspot
Fn3-119

hitp://fraternalilab kel ac uk/TITINdD/ TITINdb—a computational tool to assess titin’s role as a dlsease gene

Anna Laddach Mathias Gautel Franca Fraternali Bioinformatics, btx424



http://fraternalilab.kcl.ac.uk/TITINdb/
https://doi.org/10.1093/bioinformatics/btx424
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Whilst working on this.....

A huge amount of common variant data (also nominally healthy individuals
became available.

This has challenged preconceptions about variant associations with disease.

Can this improve our understanding of variants in health and disease?

‘ Can we use this information to predict which variants are deleterious?



Mapping Genetic Variation to Proteins:
common vs disease

COSMIC, the Catalogue Of Somatic
Mutations In Cancer, is the world's largest

411 COSMIC and most comprehensive resource for
JiL exploring the impact of somatic mutations in

Catalogue of somatic mutations in cancer

human cancer

ClinVar-Pathogenic

* ClinVar aggregates information about
genomic variation and its relationship to

ClinVar human health.
ClinVar-Benign

common no known An up-to-date report of common nsSNPs
Ve _medical_impact not known to cause clinical phenotypes.

A collection of Germline de novo variants.

Variants which are present in children but
not their parents. Some of these variants

are known to be pathogenic.




/oomVar database -
http://fraternalilab.kcl.ac.uk/ZoomVar/

Uniprot sequences
[2]

Y
Pfam/HMMER [3,4]
- assign domains

Y

BLAST [5] - find
structure homolog

(2 )

<< | PDB biounits [6]

Y
T-COFFEE [7] -
obtain mapping

Y

(o )

POPSCOMP [8] - '\ _ ~ UniPPIN [9-12] -
define interfaces PPl network

\
HomPPI [13] -
interaction zone

\

ZoomVar
database
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Data summary

gnomAD gnomAD rare | COSMIC ClinVar

common MAF > MAF < 0.005
0.05*

SAVs 21358 3860943 1731030 21272

17048 17048 16679 5594
Proteins with SAVs ReleE]0] 10487 10433 1661
and core coverage
SAVs core 1002 303311 152356 5194
Proteins with SAVs [R:3E:; 3531 3561 677
and interact
coverage
SAVs interact 157 38315 22205 768
Proteins with SAVs Relicyi 10797 10717 1703
and surface
coverage
SAVs surface 4723 990915 491179 8558

*In at least one gnomAD population



Subreglon level

@) Core, surface and Interface b) Functional sites
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Protein/domain level

d) Protein level e) Domain level 1) Domain-type level
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Investigating the enrichment of
individual proteins/domains:

P(N(SNV$,cgion) = k) = (})p*(1 = p)»~*

Investigating general trends:

. - (N(SNV'S)'Peg'Lon/Sizeregion)
P(SNVFegzon) - (N(SNVS)p'r‘otein/Sizeprotein)

Bootstrap to obtain confidence
interval



Core, Surface and Interface
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Functional analysis

FGSEA package — binomial CDF as the enrichment statistic — performed at the
whole protein and sub-protein levels.

Normalised Enrichment Statistic and significance of enrichment obtained.

K-means clustering of Normalised Enrichment Statistic at the whole protein level.

Map analysis at the sub-region level to K-means clusters at the whole protein
level.




Missense variants target distinct functional
pathways in health and disease o

Which functional pathways are enriched
in variants in each dataset? o

O o .,/ g “PC 1
Clustering of - VA o

PC3 , .
pathways
. Pathway / 1

enrichment

M score for

ap .
. each

proteins to dataset coshic

KEGG

S athwavs Proliferative, cancer-associated pathways
Map i ' l Metabolic pathways

Varlaﬁts to Sensory, immune, metabolic pathways
proteins (response to environment)
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TITINrf: A Titin variant impact predictor




Class Description

Healthy 49 common nsSNVs from the 1000 genomes project (MAF > 0.02)

Disease 45 SNVs in total. 41 titin disease nsSNVs from the literature, 4
unpublished SNVs known to be disease causing

Data

.

Fold 1 Training \

Fold 2| ITestl
Fold 3 - ....... : _:i Average

,l
/s Final Measure
2 = I g

Figure 3: source:edureka.co




Network

- degree
centrality

+ node
centrality

- betweeness
centrality

- load
centrality

+ neighbour
centrality

Dynamics
* mean

squared
fluctuations

- sensor/ef-

fector

- mechanical

stiffness

Structure
« SASA

- residue
density

Sequence

+ PSIC score

- Kidera
factors



+ C alpha atoms represented by nodes connected by elastic springs
» course-grained, computationally inexpensive
» can calculate on a large scale




Conformational

ensemble generated Network properties calculated
from elastic network .
model ‘Degree centrality

+Load centrality
‘Betweeness centrality

Distribution for each feature

*Mean

Standard deviation
*Maximum
*Minimum
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\

\
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predictor accuracy precision  recall F1 MMC

TITINrf 0.80 0.84 0.80 0.81 0.61

Condel 0.73 0.75 0.65 0.69 0.46

oob score of final model =0.82

Precision _ _ _
Out of all SAVs predicted to be disease-associated how many are actually

disease-associated?

Recall
Out of all disease-associated SAVS how many are correctly predicted?

F1 score .
o . precision-recall Rfed icted
" precision+recall Deleterious | Neutral
MCC T Deleterious TP FN
TP-TN—FP-EN Neutral FP TN

 (TP+FP)(TP+FN)(TN+FP)(TN+FN)




Currently using features from this analysis to create

ZoomVar predictor

e Solvent accessible
surface area

Residue 1 e Kidera factors
|€V€| e |[nteraction sites

e Disorder/order
e PSIC score

Domain
level

e CATH domain
architecture Protein level

e KEGG pathways
e Abundance
e Expression

e Melting temperature

Prediction

Random forest cartoon source: http://inspirehep.net



Conclusion

The created ZoomVar database has allowed us to investigate features
of variants the general population (gnomAD) and disease (ClinVar).

We find features which clearly segregate population and disease-
associated variants.

This will enable us to create a random-forest based predictor of
variant impact which uses these novel features.
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