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The cell is a complex system

We cannot explain the genotype-phenotype connection 
or diseases (e.g. cancer) with a single molecular layer

COSTANZO, Michael, et al. Science, 2016, 353.6306: aaf1420.
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Multi-omics integration in cancer

Sun, Yan V., et al.  Advances in genetics, 2016.

Lot of omics data 
available (more in 
the future) 

We miss 
integrative 
methodologies
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Multi-omics integration in cancer
Challenges: large number and heterogeneity of 
variables, noise of data 

Methodological aim: to combine dimensionality 
reduction and enhance Network-based approaches

Yugi, Katsuyuki, et al. Trends in biotechnology, 2016.
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Multi-omics integration in cancer

1. MicroRNA-mRNA interactions in 
colorectal cancer subtypes 

2. Cancer data integration with 
multiplexes 

3. Dimensionality reduction to 
reconstruct cancer processes 
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MicroRNA-mRNA interactions in 
colorectal cancer subtypes:
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Colorectal Cancer (CRC) subtypes

A cancer subtype is a set of 
homogeneous  patients. 

Cancer subtyping is important 
for clinical management.

SSM Stem Serrated mesechymal CRC subtype

SSM

SSM SSM

Marisa, L. et al. PLoS Med 10, e1001453 (2013). 
Sadanandam, A. et alNat Med 19, 619-25 (2013). 
De Sousa E Melo, F. et al. Nat Med 19, 614-8 (2013).
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Identify microRNAs driving the CRC 
subtypes

CANTINI, Laura, et al. Nature communications, 2015, 6: 8878.
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CANTINI, Laura, et al. Nature communications, 2015, 6: 8878.

MicroRNA Master Regulator Analysis 
(MMRA)
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Many microRNAs regulate SSM

24 microRNAs underlying the CRC 

subtypes identified from TCGA data 

Results confirmed on a panel of ~100 

cell lines  

Experimental validations then 

performed to test in silico predictions

CANTINI, Laura, et al. Nature communications, 2015, 6: 8878.
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Validations in cell lines
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CANTINI, Laura, et al. Nature communications, 2015, 6: 8878.
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New direction: genomically co-
clustered mirRNAs

Hausser, Jean, and Mihaela Zavolan. Nature Reviews Genetics 15.9 (2014): 599-612.

Oncogenic miR-17~92a 
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From MMRA to clustMMRA

MMRA has been extended to clustMMRA  (https://github.com/lcan88/clustMMRA) 

clustMMRA has been applied to two independent BRCA datasets 

11 genomic clusters of microRNAs have been identified as putative 

driver of BRCA subtypes 

miR-199a/214 validated in cell lines 

Cantini, Laura, et al. Nucleic acids research 47.5 (2019): 2205-2215.
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miR-199a/214 validated in  
MDA-MB-231

Proliferation

EMT
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Cantini, Laura, et al. Nucleic acids research 47.5 (2019): 2205-2215.
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Cancer data integration with 
multiplexes:
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Layers of multiplex: 

1: Gene co-expression network 

2: Regulatory network (Transcription Factors) 

3: Regulatory network (microRNAs) 

4: Protein-protein interactions (PPIs)

CANTINI, Laura, et al. Scientific reports, 2015, 5: 17386.

The multiplex framework
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Community detection on Multiplex: 
1. Community detection within each layer (Infomap, OSLOM , Label 

propagation, Louvain, Modularity optimization via simulated annealing) 
2. Consensus clustering (Lancichinetti et al., Scientific reports, 2012). 

Summarized into Gene4X (https://github.com/lcan88/Gene4x)

CANTINI, Laura, et al. Scientific reports, 2015, 5: 17386.

Community detection on multiplex
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Gene4x results in cancer 
The approach has been applied to four cancers (gastric, lung, arc and 
pancreas) 

Multiplex results are not driven by a specific layer:

CANTINI, Laura, et al. Scientific reports, 2015, 5: 17386.
�21



Multiplex vs. single network
1. The multiplex 
detects more 
communities than the 
co-expression network.

CANTINI, Laura, et al. Scientific reports, 2015, 5: 17386.
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Multiplex vs. single network

2. The communities of 
the multiplex more 
frequently reflect 
functional modules.

CANTINI, Laura, et al. Scientific reports, 2015, 5: 17386.

1. The multiplex 
detects more 
communities than the 
co-expression network.
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Multiplex vs. single network
1. The multiplex 
detects more 
communities than the 
co-expression network.

2. The communities of 
the multiplex more 
frequently reflect 
functional modules.

3. The communities of 
the multiplex more 
frequently reflect 
tumor vs. normal 
differential modules.

CANTINI, Laura, et al. Scientific reports, 2015, 5: 17386.
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Dimensionality reduction to reconstruct 
cancer processes:
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Matrix Factorization (MF)
Current omic datasets are huge, with MF we reduce their dimensionality without 

loosing biological information

X ≈ AS 
with

≈

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted. 
Stein-O’Brien, G.L. et al. Trends in Genetics (2018).

X transcriptomic dataset (genes x samples) 
A matrix of metagenes (genes x #components) 
S matrix of meta samples (samples x #components)

�26



Cell cycle Immune infiltration Tissue-specific signals 

+ …X XX

Matrix Factorization (MF)

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted.
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Matrix Factorization (MF)
State-of-art MF approaches:

Principal Component 
Analysis (PCA)

Independent Component 
Analysis (ICA)

Non-negative Matrix 
Factorization (NMF)

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted.
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Assessing reproducibility of MF

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted.
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Assessing reproducibility of MF

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted.
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Landscape of sICA factors in CRC

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted.
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Landscape of sICA factors in CRC

CANTINI, Laura, et al. Bioinformatics, 2019, Accepted.
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New direction: CRC Consortium
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Consensus Molecular Subtypes of CRC (CMS) have been proposed  

Few is known about their molecular pathways 

Use consensus of different methods to characterize CMS subtypes 

GUINNEY, Justin, et al. Nature medicine, 2015, 21.11: 1350.
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New direction: Inverse comorbidity

SÁNCHEZ-VALLE, Jon, et al. Scientific reports, 2017, 7.1: 4474. 
SANCHEZ-VALLE, Jon, et al. bioRxiv, 2018, 431312.
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New direction: Multi-omics 
dimensionality reduction

IBENS 
Laura Cantini 
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Few multi-omics dimensionality 

reduction approaches currently 

exist. 

Our aim: 

1. To assess the performances of 

existing methods (bulk and 

single-cell)   

2. To explore new solutions based 

on combination of network-

theory and  matrix factorization

ARGELAGUET, Ricard, et al. Molecular systems biology, 2018, 14.6: e8124.
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Take home message:
Complex systems (e.g. cancer) cannot be explained by looking 

at its parts in isolation. 

With omics data we have good the inputs to achieve this aim. 

Methodologies able to insightfully combine the omics layers are 

now fundamental. 

Combining complementary approaches, such as networks and 

dimensionality reduction, can be the key to achieve this aim.    
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Thanks for the 
attention

“Behind complexity, there is always simplicity to be revealed. 
  
Inside simplicity, there is always complexity to be discovered.” 

Gang Yu



1.	Association	of	the	ICs	to	clinical	
annotations	and	cancer	subtypes	

2.	Association	of	the	ICs	to	pathway	
collections

ICs ICs

Biological interpretation of sICs

Stein-O’Brien, G.L. et al. Trends in Genetics (2018).
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