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The idea behind digital computers may be explained by
saying that these machines are intended to carry out any
operations which could be done by a human computer.

Alan Turing
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THE IMITATION GAME



THE IMITATION GAME

Input data Combinatorial problem Critical variable
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… CONTEMPORARY CHALLENGES
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http://www.gartner.com/newsroom/id/2819918

Internet of Things

Data Science Big Data

Content analytics

Smart Things
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WHAT ARE DATA CENTRIC SCIENCES ?
THE STUDY OF COMPLEX SYSTEMS
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DIGITAL HUMANITIES



What makes Bach sound like Bach? 

http://www.washington.edu/news/2016/11/30/what-makes-bach-sound-like-bach-new-dataset-teaches-algorithms-classical-music/

The composer Johann Sebastian Bach left behind an incomplete fugue upon his death, 
either as an unfinished work or perhaps as a puzzle for future composers to solve

The Art of  Fugue is based on a single subject employed in some variation in each canon and fugue

- Simple fugues (Contrapunctus I-IV, 4 voices)
- Counter fugues subject used simultaneously in regular, inverted, augmented, and diminished forms (Contrapunctus V- VII)
- Double and triple fugues, employing two and three subjects respectively (Contrapunctus VIII – XI)
- Mirror fugues, a piece is notated once and then with voices and counterpoint completely inverted, without violating contrapuntal

rules or musicality (Contrapunctus XII – XIII)
- Canons, labelled by interval and technique (Augmentationem in Contrario Motu, alla Ottava, Decima in Contrapunto alla Terza,

Duodecima in Contrapunto alla Quinta)
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… UNFINISHED FUGUE

Fuga a 3 Soggetti (Contrapunctus XIV): 
- 4-voice triple fugue 
- the third subject of  which is based on 

the 
B A C H motif

« At the point where the composer introduces the name BACH in the 
countersubject to this fugue, the composer died. »
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CHALLENGING PUZZLES
• Identify the notes performed at specific times in a recording
• Classify the instruments that perform in a recording
• Classify the composer of a recording
• Identify precise onset times of the notes in a recording
• Predict the next note in a recording, conditioned on history

Music information retrieval
- Automatic music transcription
- Inferring a musical score from a recording
Generative models fabricating performances under various constraints

- Can we learn to synthesize a performance given a score? 
- Can we generate a fugue in the style of Bach using a melody by Brahms?
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DATA AS BACKBONE
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Volume

Velocity
Variety

Veracity

Value

1000 Yottabytes 1 Brontobyte

1000 Brontobytes 1 Geopbyte

Data Science Computational Science

Digital humanities
Social Data Science

Network Science

Computation
(Algorithm: mathematical model)

Experiment
(Architecture: computing environment)

http://spectrum.ieee.org/computing/software/beyond-just-big-data



ARTIFICIAL INTELLIGENCE
UNDERSTANDING & SIMULATING COMPLEX SYSTEMS
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https://ai100.stanford.edu/2016-report



Computer Science

Artificial Intelligence

Curated
Knowledge

Machine
Learning

Reverse
Engineering
The Brain

Data Mining
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WHAT ABOUT DATA ?
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5v: Value
Which is the real value of data?
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Consumed data: quality, conditions in which data is retrieved; explicit 
cultural, contextual, background properties; uncertainty, ambiguity degree
Conditions of consumption: reproducibility, transparency degree (avoid 

“software artefacts”)
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Different sizes, evolution in structure, completeness, production conditions & content, 
access policies modification …
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DATA COLLECTIONS
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RAW DATA:
heterogeneous (variety), huge (volume), incomplete, unprecise, missing, contradictory (veracity),  continuous releases produced at 
different rates (velocity), proprietary, critical, private (value)

NOT MANAGEABLE NEITHER EXPLOITABLE AS SUCH



Applications &
Data consumers

C
om

pu
tin

g 
re

so
ur

ce
s

D
at

a 
co

lle
ct

io
ns

’ 
re

le
as

es

Data cleaning, processing and storage requires a lot of
DECISION MAKING

Data scientist requires knowledge about data collections content



DATA SHARDING

Sharded & colocated
Input data

Distributed File SystemMultimedia multiform data

23MusicNet: 330 classical music recordings, 1 million annotated labels indicating http://homes.cs.washington.edu/~thickstn/musicnet.html
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DATA HARVESTING & STORAGE

Hardware

Requirements

Operations

C

A

P
Partition tolerance: 
The system works well despite 
physical network partitions

Consistency: 
all clients always have 

the same view of  de data

Availability: 
each client can 

always read & write

C A P
adaptive



SHARDING ACROSS DIFFERENT STORES

Sharded & colocated
Input data

Distributed File System

Multimedia multiform data

Factors:
- RAM - Disk
- CPU - Network

Sharded data architecture
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Sharded & colocated
Input data

Distributed File System

Multimedia multiform data

Factors:
- RAM - Disk
- CPU - Network

Sharded data architecture
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- Which attribute can be used to shard the collection?
- Is there critical data with particular availability requirements?
- Should some fragments be collocated?



Sharded & colocated
Input data

Distributed File System

Multimedia multiform data

Factors:
- RAM - Disk
- CPU - Network

Sharded data architecture
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Decision making depends on: item data structure, distribution of
values of each attribute of the data structure, dependency among attributes ...

This information must be discovered, computed and/or extracted



Ranged sharding gives both the best and the worst performances
Hashed _id gives the most consistent and generally low time
Hashed location gives some of the best times
­ The most complex queries remain relatively quick

EXPERIMENTAL RESULTS: QUERIES
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Integrated Data Curation Platform

Data  Cleaning  & Processing Services

PIG HADOOP

Data Harvesting Services

REST FLUME

Data  storage Services

MongoDB Neo4J CouchDBTagged Data Collections

Towards Cloud big data services for intelligent transport systems; Gavin Kemp, Genoveva Vargas-Solar, Catarina Ferreira da Silva, Parisa Ghodous, Christine Collet, Pedropablo Lopez.
concurrent engineering 2015, Jul 2015, Delft, Netherlands
Service Oriented Big Data Management for Transport; G. Kemp, G. Vargas-Solar, C. Ferreira Da Silva, P. Ghodous, C. Collet; Smart Cities, Green Technologies, and Intelligent Transport Systems
/ series Communications in Computer and Information Science, Springer, 579, pp. 267-281, 2016

DATA CURATION ENVIRONMENT



Sharded & colocated
Input data

Distributed File System

Classification

Data 
transformation

Tagged opus execution

Multimedia 
multiform data

Indexing classes

INDEXING & STORING 

• the precise time of each note every recording, 
• the instrument that plays each note, 
• the note's position in the metrical structure of the composition
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A combinatorial problem where a query result is a data collection integrated by

• composing different data providers
• data processing (cloud) services

that fulfill quality constraints and SLAs specified by a data consumer

”SUR MESURE” DYNAMIC DATA INTEGRATION



”SUR MESURE” DYNAMIC DATA INTEGRATION

Selecting candidate 
concrete services

Creating candidate 
service descriptions 

(CSD)
Combinig CSDs Producing 

rewritings

§ A rewriting algorithm customizing
§ data providers (services) look up
§ data integration considering different data consumers requirements and expectations
§ requirements & expectations depend on the context in which they consume data (e.g.,

mobile devices with few physical capacities, critical decision making)
1 D. A. S. Carvalho, P. A. S. Neto, C. Ghedira, G. Vargas-Solar, N. Bennani. Rhone: a quality-based query rewriting algorithm for data integration. East-European Conference on Advances in Databases and
Information Systems, Aug 2016, Prague, France. ADBIS East-European Conference on Advances in Databases and Information Systems, 2016.



Data analytics
operations

LOADING FOR ANALYTICS

•Identify the notes performed at specific times in a recording
•Classify the instruments that perform in a recording
•Classify the composer of  a recording
•Identify precise onset times of  the notes in a recording
•Predict the next note in a recording, conditioned on history

Music information retrieval
- Automatic music transcription
- Inferring a musical score from a recording
Generative models that can fabricate performances under various constraints

- Can we learn to synthesize a performance given a score? 
- Can we generate a fugue in the style of  Bach using a melody by Brahms?
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ACCESS METHODS

Read Optimized

Update Optimized
(write)

Memory Optimized
(space)

Adaptive structures
• Cracking
• Merging Approximate indexes

• Sparse index
• Bloom filter
• Bitmap

Differential structures
• PDT1
• LSM
• PBT
• MaSM

Point & Tree indexes
• Hash
• B-Tree
• Trie
• Skiplist

R U M
adaptive

Hardware

Requirements

Operations

Predefined Data Types, Log-structured Merge Tree, the Partitioned B-tree, the Materialized Sort-Merge algorithm
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DEALING WITH VOLUME
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Buffer 
poolDisk page

Free frame

Local Disk

R A M
No/NewSQL

Storage
Service

Persistence management strategies for 
reading/writing/updating data from 
RAM, Cache and Disk for dealing with
volume



FINAL COMMENTS
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Avoid getting lost in the dense complexity of technological  chaotic forest
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Addressing data centric sciences problems is a matter of  designing complex systems according to 
a multidisciplinary vision

Move from design based on intuition & experience to a more formal and systematic way
to design systems
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L e t ’ s  m o v e  f o r w a r d  d a t a  c e n t r i c  s c i e n c e s
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C

A

P

C - A A - P

C - P

Data models

- Relational
- Key-Value
- Column oriented Tabular
- Document oriented

- Dynamo
- Voldemort
- Tokyo Cabinet
- KAI

- Cassandra
- SimpleDB
- CouchDB
- Riak

- BigTable
- HyperTable
- Hbase

- MongoDB
- TerraStore
- Scalaris

- BerkeleyDB
- MemcacheDB
- Redis

- RDBM’s
- MySQL
- Postgres
- etc

- Aster Data
- GreenPlum
- Vertica

Availability: 
each client can 

always read & write

Partition tolerance: 
The system works well despite 
physical network partitions

Consistency: 
all clients always have 

the same view of de data

VISUAL GUIDE TO NOSQL SYSTEMS


