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Meta Request for Proposals &z

JUNE 16, 2022

Announcing the winners of the 2022 Silent Data June 2022
Corruptions at Scale request for proposals
By: Meta Research Research award winners

m M e l a Principal investigators are listed first unless otherwise noted.

Hardware failures root causing: Harnessing microarchitectural modeling
Dimitris Gizopoulos (National and Kapodistrian University of Athens)

Lightweight in-production SDC detection tools inspired by coding theory
Rashmi Vinayak (Carnegie Mellon University)

Quarantine and vaccination framework for SDC mitigation at-scale
Devesh Tiwari (Northeastern University)

Software-hardware strategies for enhancing ML application resilience
Prashant Nair (University of British Columbia), Karthik Pattabiraman (University of British Columbia),
Sathish Gopalakrishnan (University of British Columbia)

Testing for corrupt execution errors

@*«Athens Caroline Trippel (Stanford University)
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SDCs - as simple as this

= Operation: addition 5 + 6
= Correct result should be: 11
= CPU generating SDC says: 13

» All subsequent calculations continue with the wrong 13 value

= When is difference noticed?
= When something goes grossly wrong!
= Maybe never
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& CAGD @BSC - Feb 2023 4

<=



What is a Silent Data Corruption
or Silent Error?

* Program runs to end (hours, days)
= Qutput is produced
= System Fully responsive

= No detection
= No ECC, exception, ...

= Qutput is wrong (data corruption)
= Nobody knows ! ® (silent)

Lg Athens
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» Other ex
pone :
= /nt(1.152) = 14nzt5 work fine

Harish Dattatraya Sneha pendharkar Matt Beadon Chris Mason

= Systema tic but ve ry rare | silent Data Corruptions at Scale
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s anbved BV PR always accurate. In some cases, the CPU can perform computation
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» “Tracking down these errors is challenging, said David

7 Athens

Ditzel, chairman and founder of Esperanto

Technologies. [...] He said his company’s new chip,
which is just reaching the market, had 1,000 processors __,
made from 28 billion transistors. He likens the chipto &
an apartment building that would span the-surface ‘

of the entire United States. Heado®™ e
M L grov we'e
105 B‘gp ot : :m\k\ o°
oth one™
[ et “\".\\cs\ \' ‘f"‘\:-\.
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= Using Mr. Ditzel's metaphor, Prof. Subhasish Mitrasaid that
finding new errors was a little like searching for a single running
faucet, in one apartment in that building, that malfunctions only
when a bedroom light is on and the apartment door is open.

@BSC -Feb 2023
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Silent Corruptions/Errors at Scale

= Silence means results:
= Are considered correct
= Are distributed at scale

= Data centers, Cloud,
Supercomputers

» Effects of SDCs may take
weeks or months before
getting noticed (if ever) ®

&
3 Athens
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» Hyperscalers, cloud services providers — detect faulty CPUs and
move out of production

= Software developers — “harden” software to bypass/recover
from faulty hardware structures

= CPU vendors - root cause, feedback for design, manufacturing,
testing improvements

» Users — better not know ©

@BSC -Feb 2023
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SDC rates/behaviors by Hyperscalers

= Meta and Google report ~1 CPU in a 1000 0O Meta
g e n e ra tes S D CS In our large-scale infrastructure, we have run a vast library of

. silent error test scenarios across hundreds of thousands of ma-

u O r 1 OO tO 1 OOO D P PM (d e FECtIVG pa I'tS chinets in ourtﬂetet. "This has resulted in hundreds of CPUs detected
per million) for these errors, showing that SDCs are a systemic issue across

generations. We have monitored SDCs for a period longer than
18 months. Based on this experience, we determine that reducing

u I n FO We k n OW: silent data corruptions requires not only hardware resiliency and
. . prfduction detection mechanisms, but also robust fault-tolerant
= Systematic/reproducible events srelachtestires:
= Affect the same instruction all the time
suddenly and unpredictably for several reasons, including
" Da ta d S p en d en t seemingly-minor software changes. Hyperscalers have a re-
. sponsibility to customers to protect them against such risks.
" Ch I p d 9 e d e p en d en t For business reasons, we are unable to reveal exact CEE rates,

= \Voltage/frequency dependent cevcral thossand machines . SRS TSty
= Attributed to manufacturing/design defects

Because CEEs may be correlated with specific execution
units within a core, they expose us to large risks appearing

Facebook [8]. The problem is serious enonch for ns to have

applied many engineer-decades to it. < O g Ie

@BSC -Feb 2023 10
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Likely causes for SDCs (1)

» “| see three subproblems — time zero defects, which represent
test escapes, early mortality defects (a.k.a. latent defects), and
aging related defects that occur later during the lifecycle of the
productin its system.”

= Janusz Rajski, vice president of engineering for Tessent at Siemens EDA
(https://semiengineering.com/screening-for-silent-data-errors/; Jan 2023)
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» “Are Timing Marginalities due to Process Variations the Source of
Silent Data Corruption?”

» Transistor delays and delay variability from process variations is
greatly accentuated in low voltage power saving modes.
= Adit Singh (Auburn U), Keynote at IEEE VLSI Test Symposium, April 2022.

ANumber of

;f L' Athens
#=: CALEDI @BSC - Feb 2023 12




Do we know the true rates ?

= ~1 CPU every 1000

» But these rates came only after
» Customers/users noticed and complained
= Months/years of debug

= What about SDC Escapes ?
» They are everywhere around us
= We don’t know how many

= We don't know where
« Which calculation is affected — Which result is corrupted

@BSC -Feb 2023
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Need to know to mitigate SDCs§

= Real rates of SDCs = Thus, we need: Loitil T
= 1in 1000 or more? = Root cause (origin) should exist

= Guilty hardware structures (faulty”, "buggy” CPUs!)
= Vulnerable to faults & bugs " Full system evaluation (hardware,

architecture, OS, software)

= Suspect software codes = Complete, end-to-end execution
= Susceptible instructions & (need to know the output to check
calculations corruption)

* Fine-grain observability (need to
know internal activity of hardware
while software runs)

$CAL DI @BSC - Feb 2023 14



Collecting SDCs information (#1)
Large Fleets (Hyperscalers)

» Collect data from large fleets
Google = > 2.5Mservers —year 2016, Gardner
QOMeta =>100K-year 2022
=- Microsoft = >4M—year 2021
aws » >500K-year 2012
€7 nmaacon = >1 500 000 ? — year 2020
= need to own such fleets
» does hardware provide information ?

» How long does it take?
= Years before results are collected, processed and made public
= results still valid ?
= hw+sw always evolve

2
Lx Athens
= CALED) @BSC - Feb 2023 15



Collecting SDCs information (#2)
Own/Design the CPU

AMDZ1
» Intel - AMD - Arm intel
arm

= Actively investigating the problem

» Detailed RTL (pre-synthesis), gate-level (post-synthesis), layout
(post-P&R) chip models
= Very close to real manufactured chips
» Best case to analyze faults and bugs
» no such models available to research community
= even if they were, it's impossible to simulate long executions
= no full-system, no end-to-end execution

= RISC-V
= RTL available but not yet the CPUs that hyperscalers use 4

RISC-V*

2
Lx Athens
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Microarchitectural modeling For
SDCs analysis and mitigation

= Microarchitectural, performance simulators to the rescue

>> I ChampSim/
ChampSim -
95 H s5z/zsim

sniper
CEeMmd .

= Model faults and bugs (describe i)

» Full system simulation (OS and application)

» End-to-end simulation (high throughput)

» Fine-grain observability (hardware and software)

@BSC -Feb 2023
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SDCs Assessment Options — Speed

= | ayer of abstraction
= Software — too high level, no hardware info
= Architecture/ISA - no hardware info - - B

| ' ' INEHOURIHERE
= Microarchitecture — early & flexible hw model = (, x‘ 10UN
SEVENYEARSONENRTH

= RTL - late hw model, extremely slow
= Silicon — too late, limited observability

Abstraction Performance ;
Layer (cycles/sec) * ‘ - — R

Software 3x10° N \
Architecture 6 x 107 | 11! ' ' - \
Microarchitecture 3 x 108 (simple CPU) q OLAL I ‘ 2 . 1“
1: 2 x 105 (detailed CPU)
Flip-flop 6 x 102

* J.Goodenough, R Aitken, “Post-Silicon is Too Late — avoiding the $50 Million Paperweight Starts with Validated Designs, ACM/IEEE DAC 2010.

;:"f;fi:-‘Athens * H.Cho, S.Mirkhani, C.-Y.Cher, J.A.Abraham, S.Mitra, "Quantitative Evaluation of Soft Error Injection Techniques for Robust System Design”, ACM/IEEE DAC 2013.
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The objective visualized SIcY

Early + Fast + Accurate

= Fast & Accurate SDC measure/predict and root cause

Analytical methods (ACE-like)
SDC 20% A * No SDC classification

Vulnerability

Microarchitectural analysis
accelerated

Time

& CAGD) @BSC -Feb 2023 19




Microarchitectural modeling (example: gem5)

= More than 50 hardware structures for root cause injection
(bugs, faults): Caches, Registers, Register Files, Buffers, Queues,
BPUs, BTBs, TLBs, Translation caches, etc.

nt
z
Branchtaegat buffers File
. Sl t L1-1
[[Vetiabit and g of arie | IValidbitandtagofi'l"LBJ
AMDZ
Rg iste fl
L2

""" v
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Injection Infrastructure on gem>5
(Full system, cycle accurate)

Effect classes Simulation
\ Result

Complete YES _
Execution l

NO Assertion NO
Hardware e
Inject \ NO Execution Corrupt
time >3x L= _ output?

» Soft errors (SEUs, sMBUs)

YES
* Hard errors ‘ -

* Design bugs (Benign)

_|100x - 1000x speedup over baseline gem5 simulation

é G @BSC -Feb 2023 21
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Soft errors — SEU and sMBU Case Study

= SEUs and sMBUs - 1/2/3 bits flipped per component

AVF

A.Chatzidimitriou,
G.Papadimitriou, C.Gavanas,
G.Katsoridas, and D.Gizopoulos,
“Multi-Bit Upsets Vulnerability
Analysis of Modern
Microprocessors”, IEEE
International Symposium on
Workload Characterization
(IISWC 2019), Orlando, Florida,
USA, November 2019.

| ";5:"-‘Athens
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Case Study - Undervolted Predictors
SRAM permanent faults)
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Design Bugs (00O core, renaming logic)
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] Dimitrakopoulos, and K. Patsidis, “IDLD: Instantaneous
. Detection of Leakage and Duplication of Identifiers use
—*—Masked ion of Leakage and Duplication of Identifiers used
1l o—eo .o . . for Register Renaming”, ACM/IEEE International
Symposium on Microarchitecture (MICRO 2022), Chicago,
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Why not at the Software Layer ?

» Because software-only analysis is fast but wrong ®
= (Full system) Architectural Vulnerability Factor (AVF) vs.
= (partial) Software Vulnerability Factor (SVF)

> &
°
2.
wn
<
M

Vulnerability
i
w
X

Vulnerability

FFt qsort

g : Athens G. Papadimitriou, D. Gizopoulos, “Demystifying the System Vulnerability Stack: Transient Fault Effects Across the Layers”,
IEEE International Symposium on Computer Architecture (ISCA 2021), June 2021. @BSC - Feb 2023
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SDC measurements at the Software Layer

= Still wrong ...

\O
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AVF e SVF
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> G. Papadimitriou, D. Gizopoulos, “Demystifying the System Vulnerability Stack: Transient Fault Effects Across the
2 Athens Layers”, IEEE International Symposium on Computer Architecture (ISCA 2021), June 2021.
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Is it Accurate?

Validation to Chips Beaming (1)

= ARM Cortex-A9 CPU core o

= gem5 SEU fault injections vs. neutron beaming

= 11 applications

= full system (Linux)

» End-to-end workload execution (to record SDCs)

= SDCs FIT rates very close

FIT SDC-only

* A.Chatzidimitriou, P.Bodmann, G.Papadimitriou,
D.Gizopoulos, P.Rech, “Demystifying Soft Error Assessment

Strategies on ARM CPUs: Microarchitectural Fault Injection vs.

Neutron Beam Experiments”, IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
2019), Portland, Oregon, USA, June 2019.

?
25 ﬁ 22
|
Beam || True Fault
FIT FIT Injection
0 FIT
gEAz i:s @BSC - Feb 2023
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Is it Accurate?
Validation to Chips Beaming (2)

P.Rech, “Soft Error Effects on Arm Microprocessors: Early
Estimations vs. Chip Measurements”, IEEE Transactions on

= ARM Cortex-A5 and Cortex-A9 CPU cores
Computers, October 2022 (featured article).

= gem5 SEU fault injections vs. neutron beaming
= bare metal vs. full system (Linux) DUE
= standalone vs. SoC-integrated 97.7x
DUE
-—- r ------- E 5.1x
- “soc (. — o5\
D 0
A9 45| =) c
-1.3] — CPU
gsort q = I: CPU I:
matmul ﬂizo = \. _; J
-50 -40 -30 -20 -10 0 10 20
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Conclusion

= Silent Data Corruptions
= Significant problem at any computing scale

» To detect and provide mitigation, we need to know
» True SDCrates
» Suspect hardware blocks
= \Vulnerable software pieces

= Microarchitectural modeling is an important piece of the puzzle
= Along with silicon + system measurements
= Along with finer granularity models

i* Athens
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