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‘T simply wish that, in a matter which so closely
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sion shall be made without all the knowledge which
a little analysis _and_calculation can provide’

~ Daniel Bernoulli 1760.




150 years later ... statistical physics started to shape the story of epidemic modelling

McKendrick and Kermack

Essentially, they introduce the “Law of mass-action” in epidemic modelling
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' Scope: types of disease

Microparasites: small, single-cell. Viruses,
bacteria, protozoa.
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' Scope: disease transmission

¢ Direct transmission: there is direct physical
contact between subjects exposed to the
disease.

Basic reproduction number R: the expected number of cases directly generated
by one case in a population where all individuals are susceptible to infection



' Scope: disease transmission

Basic reproduction number R: the expected number of cases directly generated
by one case in a population where all individuals are susceptible to infection

R~1.4 R~2.0 R~3.0
8 DAY INFLUENZA EBOLA COVID
1 2 3 4
/ | \ 2 5 8 14
3 12 20 46
i 8 8 4 24 48 146
5 50 112 454
//‘ /‘\ |\\ 6 102 256 1394
7 206 576 4246
ﬁ 6 8 8 417 1280 12866
9 840 2816 38854



' Scope: disease transmission

Basic reproduction number R: the expected number of cases directly generated
by one case in a population where all individuals are susceptible to infection

Prevalence

R~1.4 R~2.0 R~3.0
DAY INFLUENZA EBOLA COVID
1 2 3 4
2 5 8 14
3 12 20 46
4 24 48 146
5 50 112 454
6 102 256 1394
7 206 576 4246
8 417 1280 12866
9 840 2816 38854
3000 -
Influenza
== Epola
2000 -
1000 -
o -




' Scope: disease transmission

Basic reproduction number R: the expected number of cases directly generated
by one case in a population where all individuals are susceptible to infection

Prevalence
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' Scope: disease transmission

Basic reproduction number R: Assuming an infection probability per contact (3,
the expected number of individuals infected by an infected individual on a time
period Tis

R=1[ (k) ps
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To control de epidemics, reduce R below 1, we can only act on these parameters:

Reduce 1 by early detection and isolation
Reduce 3 by drugs or physical protection
Reduce (k) by social distancing and confinement

Reduce ps by vaccination, confinement or infection immunity
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1ISEASE

Immune system has
cleared the pathogen.
Individual is no longer
infectious.

Level of pathogen too low to
be infectious.

Probably no signs of infection.

Diseased

Susceptible Exposed Infectious Recovered

N\

Level of pathogen high
enough to transmit
infection to others.




' Scope: characterization of disease states

Incubation Diseased

Medical status
Infection status

Susceptible Exposed Infectious Recovered
4+——>

Pathogen

time of
infection



! Scope: compartmental models

Other diseases are better described by SIS. Here
the host once recovered is soon again
susceptible. Influenza, STDs.




' Microscopic Markov Chain Approach (MMCA)

Main ideas:

 |nstead of discrete states of individuals, describe their individual
orobabilities of being in a certain state

* Deterministic maps for the evolution of these probabilities
* Accounting for the specific contact matrix between individuals,
instead of an ensemble, allows for a more accurate description of

spreading in real networks

e Easy to model from the Markov chain of possible states in discrete
time steps

* Define the macrostate as the order parameter accounting for the
average fraction of infected individuals

Discrete-time Markov chain approach to contact-based disease spreading in complex networks S. Gomez, AA, J. Borge-
Holthoefer, S. Meloni and Y. Moreno, Europhysics Letters, 89, 38009 (2010)









' Microscopic Markov Chain Approach (MMCA)

pi(t+1) = (1 —pi(t))(1 — qi(t)) + (1 — p)pi(2)
1:[ 1 — Brjip;(t))

Dynamical system of N map equations with N time-dependent variables

Parameters: The system is a contraction mapping
* Initial conditions at time t=0 for every value of the parameters
* Tj; : contact matrix beyond B. in the interval (0,1], and
. 6; infection rate then the existence of fixed points is
* [L: recovery rate guaranteed by the Banach fixed point

theorem. We can solve the system by
iteration.



' Microscopic Markov Chain Approach (MMCA)

e SIS model (reactive process)
e Recovery u = 1.0
+ Scale-free network with p(k) ~ k™7 N = 10,y = 2.7
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Results of the simulations and model for an infection starting in Oaxaca using
the global air transportation network

Monte Carlo

MMCA




' Microscopic Markov Chain Approach (MMCA)

Calculation of the epidemic threshold

In the steady state
pi = (1—pi)(1 —q)+ (1— p)p

Near the critical point:
N
0<p: <1 C]izl_ﬁz"“jipj
7=1
A first order expansion in the probabilities yields:

Z(Tji—%5ji>pj:0 » Rp = %ﬁ

g=1

Solving the eigenvalue problem, the epidemic threshold is found as:




MMCA model for metapopulations

Metapopulations:
Networks of patches of individuals whose interactions are also driven by
mobility
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Adapted from Dirk Brockman’s Complexity Explorables
http.//www.complexity-explorables.org



http://www.complexity-explorables.org
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! MMCA model for metapopulations

We can adapt the MMCA model for SIS or SIR to metapopulations with
recurrent mobility:

e Each patch is labeled as a node of the network, and the density of infected
iIndividuals is denoted by Q4

pi(t +1) = pi(t)(1 — p) + (1 — pi)ILi(2)

Probability that a healthy individual associated to node ¢ 1s infected at time ¢
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We can adapt the MMCA model for SIS or SIR to metapopulations:

e Each patch is labeled as a node of the network, and the density of infected
iIndividuals is denoted by Q4

pi(t +1) = pi(t)(1 — p) + (1 — ps)ILi(2)

Probability that a healthy individual associated to node ¢ 1s infected at time ¢

» Compute 11; (t) as a function of the mobility p

IL(t)= (1 —p)Pi(t) +p Yy Ri;jP;(t)

j=1

Probability that an individual being at node i (j) 1s infected at time ¢




! MMCA model for metapopulations

« Compute 11; (t) as a function of the mobility p
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! MMCA model for metapopulations

« Compute 11; (t) as a function of the mobility p

IL(t)= (1 —p)Pi(t) +p Yy Ri;jP;(t)
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! MMCA model for metapopulations

pilt +1) = pi(t)(1 -

H(1 = pi(t)(1 = p)

p)+

N
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! MMCA model for metapopulations

Results: comparison between Monte Carlo simulations and MMCA
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! MMCA model for metapopulations

Calculation of the epidemic threshold

pi(t +1) = (1—p)pi(t) + (1 — p;s(¢))1L;(2)

l Stationary state

pp; = (1 — pi 1L
N

II; = (1 - p) (1 - 1] - 5P§)n"’”"ﬁ) ‘|‘pZRij (1 -[la- 5P7)nl%j)

1 [=1

Linearize 1 p; =€ <<1 Vi

N N N
II; ~ (1-p) Zﬁe;nj—ml —|-pz R;; Zﬁefnl_)j
j=1 =1 =1



! MMCA model for metapopulations

Calculation of the epidemic threshold
N
;= (1-p) (1= ][ = Bej)m +pZRw (1 - H (1- ﬁpzk)”w)
7=1 =1

Linearize l p; =€ <<1 Vi

N N
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1=1 7=1 [=1
N N N
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! MMCA model for metapopulations
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! MMCA model for metapopulations

Calculation of the epidemic threshold
N
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! MMCA model for metapopulations

Calculation of the epidemic threshold

H = 1 —P ZBE 5@]”] _I_pR]Zn] _I_pZRZ] Zﬁel _p)éjlnl+plenl]
1=1 [=1

= B35y [(1=p)%6im; +p(1 = p)n;(R+RT)y; + p°ni(R-RT) ] €

Recap:  p;(t+1) = (1 —p)pi(t) + (1 — ps(2))1L:(2)
pe; = (1 — €)1

(

pe; = B(1 — &) (Me¥), Be =+ “(M)

Mo >
—e; = (Me*);
3 (Me*)



! MMCA model for metapopulations

Global Incidence for different mobility rates

ER graphs

SF networks
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' MMCA on real metapopulations
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' MMCA on real metapopulations

time MMCA Monte Carlo
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' MMCA on real metapopulations
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' MMCA on real metapopulations

. H
Pe = R (M)

Asymptotic analysis for p — 0

M, = -(1 — p)257;j71j + p(1 — p)n; (R T RT)ij +p2nj (R ' RT)?JJ'-

Mi (p — O) — 52']‘%]‘ > AmaX[M(p — O)] — Nmax

M;; (p K1) > Anax|[M(p < 1)] = nmax + Ap + Bp2

I

There are three

I different regimes




Epidemic Threshold Be = 31

M’ij — (1 —p)zéijnj —|—p(1 — )n] (R -+ RT) p TLJ (R RT) .-

1.

M;;(p =0) = di;n; > Aoz [ M (p = 0)] = g

Amam [M(p << 1)] = Nmax ‘|‘2pnmax(Rmam,max — 1)

2
i ; D" Nma Z 1 (Bmas g + Fjimaz)
i Nmax — nj

/' Three different regimes




Starcity

nmaw :

Population of hub

- Number of leaves

. Scaling factor of

leaves population

. Fraction of trips

from leaf to hub



nmax

nmax I

Starcity

Nmax : Population of hub

k : Number of leaves

(¢ : Scaling factor of
leaves population

0 : Fraction of trips
from leaf to hub

2x2 matrix VI

p(1—p) (14 k8) +p (1 —6)]
(1 - po)° + kp?6?|

|



nmax

nmax I
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Starcity

Nmax : Population of hub

k : Number of leaves

(¢ : Scaling factor of
leaves population

0 : Fraction of trips
from leaf to hub

2x2 matrix VI
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' MMCA on real metapopulations

Santiago de Cali




' MMCA on real metapopulations

Santiago de Cali Medellin Bogota
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' MMCA on real metapopulations

Santiago de Cali Medellin Bogota

Type | Type 1l Type lll



' Modelling COVID

We used the formalism to model the spatio-temporal evolution of
COVID19 in Spain

Melilla
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' Modelling COVID

Compartmental model

Recovered
No longer infectious,
develops immunity

Susceptible Exposed Asymptomatic Infected
Healthy, Infected but Infectious but displaying Infectious and Hospitalized inICU
can get infected not yet infectious no or mild symptoms displaying symptoms

With good prognosis

ns G

. . o Pre-
= - Hospitalized

Cs"{AM M)

A Susceptible individual becomes

: : $
Exposed upon contact with Asymptomatic 6
or Infected agents, according to the Pre-
contact matrix C. Deceased

Hospitalized in ICU

With fatal prognosis

P’

Deceased

Epidemiological dynamics



' Modelling COVID

Compartmental model

Recovered

No longer infectious,
develops immunity

Susceptible Exposed Asymptomatic Infected
Healthy, Infected but Infectious but displaying Infectious and Hospitalized inIcU
can get infected not yet infectious no or mild symptoms displaying symptoms

With good prognosis

- @—0—0
—» Lo B

. Pre-
S / sl e
o . Hospitalized Hpspltallzed |.n ICU
== = With fatal prognosis
gh h yh
C {A ’ I } P g
A Susceptible individual becomes D o
Exposed upon contact with Asymptomatic f
or Infected agents, according to the Pre-
contact matrix C. Deceased

Deceased

Clinical dynamics



' Modelling COVID

Age structured
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' Modelling COVID

Mobility data and mobility restrictions

Recovered

No longer infectious,
develops immunity

Susceptible Exposed Asymptomatic Infected
Healthy, Infected but Infectious but displaying Infectious and Hospitalized inICU
can get infected not yet infectious no or mild symptoms displaying symptoms

With good prognosis

Hospitalized in ICU

~ - Hospitalized _ _
With fatal prognosis

-y =

ghyah yh
C*HAL T
A Susceptible individual becomes o
Exposed upon contact with Asymptomatic 6

or Infected agents, according to the Pre-

contact matrix C. Deceased Deceased

Mobility and confinement:

e Mobility data was gathered from INE on normal week and weekend statistics
e A fraction ko of the population is confined in their households

e Confined population keep in contact with other confined households with probability ¢
e Non-confined individuals reduce their contacts due to social distancing by a fraction



' Modelling COVID

(1) = p0(t) (1-TI (1),

p ot +1) = p )T (E) + (1 —n?) p (1),
pio(t+1) = n?p9(t) + (1 —a?) g 9(t),
pio(t+1) = afpI(t) + (1—p9) p;9(t),
pi It +1) = 09 p; (1) + (1= ) p; P9(1),
pi It +1) = pf(1—09) pz’g<t)+<1—Ag>p””’g<)
piI(t+1) = pd(1—09) (L—~9) p;9(t) + X9 p; ®9(t) + p; 9 (t).
PPt +1) = NwdpfhI(t) + (1 —99) plP9(1).,
PRIt +1) = N (1—w9)p9(t) + (1 —x9) pi®9(1),
ot +1) = (T pPI() + U p PI(E) + pf ().
N
I (t) = (1 —p%) PY(t) +pgi RY P(t),
j=1
~ Ah - I.h
POty - 1 — ﬁ ﬁ(l - BA)zg (ko) f (22 Con _%()(1 B 51)7,9 (ko) f (%) con _wh_()

h=1 j=1



Results modelling COVID in Spain

+ - Riesgo SARS-CoV-2
: Pase el mouse sobre un municipio

r=A
LdJd

Barcelona¥
14 Mar 15 Mar 16 Mar 17 Mar 18 Mar MADQ'D' :

Q : Valencia®

Lisbons=

Sevilles

Algiers® T

Oran»

Rabat» Fezs
CASABLANCA®"

Chardaia*

Marrakesh»= 3.5%
MOI 0.35%
0.035%
0.0035%
0.00035%
0.000035%
Sin datos

Leaflet | Map ® OpenStreetMap, CC-BY-SA, Adapted by Wesley Cota (UFV-BR), @ CartoDB, Datos demograficos del Instituto Nacional de Estadistica (INE).
1 —



| Results modelling COVID in Spain
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Prediccion de curvas de incidencia de casos CoVID-19 criticos en Espana
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Basic reproduction number R: Assuming an infection probability per contact (3,
the expected number of individuals infected by an infected individual on a time
period Tis

R=1B(k)ps

Basic reproduction number R for COVID using our model by patch and age
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Grasping the physics:

e Neglect heterogeneities among subpopulations
e The pool of susceptible remains constant during the intervention

home
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The dependence of R(t) on the confinement ko is quadratic, confinement will force a phase transition in
the incidence curve
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! Conclusions

HIGHLIGHTS

* The model is suitable for monitoring the evolution of an epidemic outbreak, specially
In the acceleration part.

* Gives accurate information about the geographical spread, pinpointing regions at risk.

* Useful to project scenarios evaluating the degree of lockdown needed to bend the
curve.

LIMITATIONS
* Mean-field approach within patches.
* Indistinguishability of individuals.

* International mobility not included so far
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